Table 1. Human circadian gene mutation and associated phenotypic effects/disorders.

Sleep Disorders						
Gene	Mutation	Phenotype/Disorder	Ref.			
PER2	S662G ¹	FASPS	[1]			
СК1δ	$T44A^2$	FASPS	[2]			
Gene	Seq. Variant	Phenotype/Disorder	Ref.			
CLOCK	T3111C ²	Diurnal preference, DSPS	[3-6			
	SNP rs10520010	Heritability of sleepiness	[7]			
CK1ε	$S408N^1$	Reduced susceptibility to DSPS/N-24	[8]			
CK2A2	SNP rs28168	Heritability of bedtime	[7]			
PER2	$C111G^2$	Morning preference, ASPS	[9]			
PER3	V647G ¹	DSPS	[10]			
PER3	VNTR ¹	DSPS, Sleep homeostasis	[11-1			
PK2	SNP rs6599077	Heritability of sleep duration	[7]			

Mood/Behavioral Disorders						
Gene	Seq. variant	Phenotype	Ref.			
ARNTL/BMAL1	SNPs rs3789327 rs2278749	Associated with bipolar disorder	[14]			
NPAS2	L471S ¹	Diurnal preference/SAD	[15]			

PER3	SNPs rs228729 rs228642 rs228666 rs2859388 rs228697	Associated with bipolar disorder	[14]
ASMT (HIOMT)	SNPs rs4446909 rs5989681	Autism Spectrum Disorder	[16]
	Me	etabolic Disorders	
Gene	Seq. variant	Phenotype	Ref.
BMAL1	SNPs rs7950226	Type 2 Diabetes Hypertension	[17]

Hypertension

Metabolic Syndrome &

Obesity

[18]

CLOCK

ASPS: Advanced Sleep Phase Syndrome

FASPS: Familial Advanced Sleep Phase Syndrome

rs6486121

SNPs

rs486454

rs1801260

DSPS: Delayed Sleep Phase Syndrome N-24: Non-24-hour Sleep-Wake Syndrome

SAD: Seasonal Affective Disorder

VNTR: Variable-Number Tandem-Repeat polymorphism

^{1.} Amino acid substitution/variant.

². Nucleotide substitution/variant.

- 1. Toh, K.L., et al., *An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome.* Science, 2001. **291**(5506): p. 1040-3.
- 2. Xu, Y., et al., Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature, 2005. **434**(7033): p. 640-4.
- 3. Iwase, T., et al., *Mutation screening of the human Clock gene in circadian rhythm sleep disorders.* Psychiatry Res, 2002. **109**(2): p. 121-8.
- 4. Katzenberg, D., et al., *A CLOCK polymorphism associated with human diurnal preference*. Sleep, 1998. **21**(6): p. 569-76.
- 5. Mishima, K., et al., *The 3111T/C polymorphism of hClock is associated with evening preference and delayed sleep timing in a Japanese population sample.* Am J Med Genet B Neuropsychiatr Genet, 2005. **133**(1): p. 101-4.
- 6. Robilliard, D.L., et al., *The 3111 Clock gene polymorphism is not associated with sleep and circadian rhythmicity in phenotypically characterized human subjects.* J Sleep Res, 2002. **11**(4): p. 305-12.
- 7. Gottlieb, D.J., G.T. O'Connor, and J.B. Wilk, *Genome-wide association of sleep and circadian phenotypes*. BMC Med Genet, 2007. **8 Suppl 1**: p. S9.
- 8. Takano, A., et al., A missense variation in human casein kinase I epsilon gene that induces functional alteration and shows an inverse association with circadian rhythm sleep disorders. Neuropsychopharmacology, 2004. **29**(10): p. 1901-9.
- 9. Carpen, J.D., et al., A single-nucleotide polymorphism in the 5'-untranslated region of the hPER2 gene is associated with diurnal preference. J Sleep Res, 2005. **14**(3): p. 293-7.
- 10. Ebisawa, T., et al., *Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome.* EMBO Rep, 2001. **2**(4): p. 342-6.
- 11. Archer, S.N., et al., A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep, 2003. **26**(4): p. 413-5.
- 12. Pereira, D.S., et al., Association of the length polymorphism in the human Per3 gene with the delayed sleep-phase syndrome: does latitude have an influence upon it? Sleep, 2005. **28**(1): p. 29-32.
- 13. Viola, A.U., et al., *PER3 polymorphism predicts sleep structure and waking performance*. Curr Biol, 2007. **17**(7): p. 613-8.
- 14. Nievergelt, C.M., et al., Suggestive evidence for association of the circadian genes *PERIOD3 and ARNTL with bipolar disorder*. Am J Med Genet B Neuropsychiatr Genet, 2006. **141**(3): p. 234-41.
- 15. Johansson, C., et al., *Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference*. Neuropsychopharmacology, 2003. **28**(4): p. 734-9.
- 16. Melke, J., et al., *Abnormal melatonin synthesis in autism spectrum disorders*. Mol Psychiatry, 2008. **13**(1): p. 90-8.
- 17. Woon, P.Y., et al., Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci U S A, 2007. **104**(36): p. 14412-7.
- 18. Scott, E.M., A.M. Carter, and P.J. Grant, *Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man.* Int J Obes (Lond), 2007.